Ethnicity delineates different genetic pathways in malignant glioma.
نویسندگان
چکیده
In the United States and the San Francisco Bay Area, whites are nearly twice as likely as non-whites to develop brain cancer. To test whether prevalence and types of alterations in the p53 pathway in brain tumor development may explain some of this difference in risk, we have analyzed the p53 status of astrocytic gliomas from a population-based sample of cases within our San Francisco Bay Area Adult Glioma Study. We identified mutations in exons 5-8 of p53 using DNA extracted from formalin-fixed paraffin-embedded tissue blocks from 146 whites and 26 non-whites with astrocytic glioma by PCR-single-strand conformation polymorphism and direct sequencing. Tumor P53 protein (TP53) immunohistochemistry (IHC) available for 164 of these cases showed that tumors from 50% (13 of 26) of non-whites and 32% (44 of 138) of whites contained intense IHC staining for TP53, indicating persistence of TP53 protein. Irrespective of IHC status, tumors from 42% (11 of 26) of non-whites versus 13% (19 of 146) of whites contained p53 mutations (age/gender-adjusted odds ratio, 5.7; 95% confidence interval, 2.2-15.1; P = 0.0004). Patients with p53 mutation-positive tumors were also significantly younger than patients with mutation-negative tumors and somewhat more likely to be female. A higher proportion of tumors from non-whites than from whites had transition mutations, but there were similar proportions of transversion mutations in tumors from whites and non-whites. Whites and non-whites also had similar proportions of tumors with p53 mutations that stained intensely for TP53 (78 and 82%, respectively). Because whites have higher risk for glioma than non-whites in this population, that the gliomas from whites were less likely than those from non-whites to have p53 mutation suggests that whites may be more likely than non-whites to be at risk for the more common type of astrocytic gliomas, which do not contain p53 mutations.
منابع مشابه
Types of glioma brain tumors and genetic alterations in signaling pathways in them
Types of glioma brain tumors and genetic alterations in signaling pathways in them Background & Objective: Glioma is a common type of primary brain tumor originating in the glial cells that surrounds and supports neurons in the brain. These tumors arise from three different types of cells that are normally found in the brain: astrocytes, oligodendrocytes, and ependymal cells, accordingly types ...
متن کاملEMT related lncrnas’ as novel biomarkers in glioblastoma: a review article
Glioma is the most common type of brain tumor and according to the 2016 WHO classification, based on invasion level, it is divided into four categories. The most severe and invasive type is grade IV glioma or glioblastoma (GBM), which has a very poor prognosis and a survival rate of only 15 months. However, the molecular pathway of invasion in malignant glioma tumors has not yet been clearly el...
متن کاملExploring the Possibility of Estimating Degree of Glioma Tumors by Measuring Apparent Diffusion Coefficient
Introduction: Most common glioma tumors are tumors of the central nervous system (CNS) which are the cause of about 40 to 50 percent of brain tumors. This type of cancer includes 2 to 3 percent of cancers in the world. Conventional MRI is powerless in the detection and differentiation of benign and malignant tumors. In this case, diffusion weighted imaging (DWI) can create cont...
متن کاملNew treatment strategies for malignant gliomas.
Malignant gliomas are the most prevalent type of primary brain tumor in adults. Despite progress in brain tumor therapy, the prognosis of malignant glioma patients remains dismal. The median survival of patients with glioblastoma multiforme, the most common grade of malignant glioma, is 10-12 months. Conventional therapy of surgery, radiation and chemotherapy is largely palliative. Essentially,...
متن کاملA Drosophila Model for EGFR-Ras and PI3K-Dependent Human Glioma
Gliomas, the most common malignant tumors of the nervous system, frequently harbor mutations that activate the epidermal growth factor receptor (EGFR) and phosphatidylinositol-3 kinase (PI3K) signaling pathways. To investigate the genetic basis of this disease, we developed a glioma model in Drosophila. We found that constitutive coactivation of EGFR-Ras and PI3K pathways in Drosophila glia and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 61 10 شماره
صفحات -
تاریخ انتشار 2001